Galectin – Reviews:
- Bertuzzi, S., et al. (2020). Targeting Galectins With Glycomimetics. Frontiers in chemistry, 8, 593.
- Johannes, L., Jacob, R., & Leffler, H. (2018). Galectins at a glance. Journal of cell science, 131(9).
- Sciacchitano, S. et al. (2018). Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. International journal of molecular science, 19(2), 379
- Nabi, I.R., Shankar, J., & Dennis, J.W. (2015). The galectin lattice at a glance. Journal of cell science,128(13), 2213-2219.
- Li, L.C., Li, J., & Gao, J. Functions of galectin-3 and its role in fibrotic diseases. (2014). Journal of pharmacology and experimental therapeutics, 351(2), 336-343.
- Mackinnon, A., et al. (2014). Design, synthesis, and applications of galectin modulators in human health: In C. Rademacher and P. H. Seeberger, (Eds.).Topics in Medicinal Chemistry: Carbohydrates as Drugs. Springer-Verlag GmbH & Co. KG, Berlin/Heidelberg, 95-121.
- Leffler, H. & Nilsson, U. (2012). Low-Molecular Weight Inhibitors of Galectins. In A. A. Lyosov and P. G. Traber (Eds.). Galectins and Disease – Implications for Targeted Therapies. ACS Symp. Ser. No. 1115, 47-59.
- Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., & Poirier, F. (2004). Introduction to galectins. Glycoconjugate journal, 19(7-9), 433-40.
Galectin-3 & Fibrosis:
- Hirani, N. et al. (2020). Target-inhibition of galectin-3 inhaled TD139 in patients with idiopathic pulmonary fibrosis. European respiratory journal, 56(6).
- Slack, R.J. et al. (2020). The therapeutic potential of galectin-3 inhibition in fibrotic disease. The international journal of biochemistry & cell biology.
- Slack, R.J. et al. (2020). Translational pharmacology of TD139, an inhaled small molecule galectin-3 (Gal-3) inhibitor for the treatment of idiopathic pulmonary fibrosis (IPF). The FASEB journal, 34: 1-1.
- Stegmayr, J., et al. (2019). Extracellular and Intracellular Small-Molecule Galectin-3 Inhibitors. Scientific reports, 9(1), 2186.
- Frangogiannis N. G. (2018). Galectin-3 in the fibrotic response: Cellular targets and molecular mechanisms. International journal of cardiology, 258, 226–227.
- Chen, W. S., Cao, Z., Leffler, H., Nilsson, U. J., & Panjwani, N. (2017). Galectin-3 Inhibition by a Small-Molecule Inhibitor Reduces Both Pathological Corneal Neovascularization and Fibrosis. Investigative ophthalmology & visual science, 58(1), 9–20.
- Meijers, W. C., López-Andrés, N., & de Boer, R. A. (2016). Galectin-3, Cardiac Function, and Fibrosis. The American journal of pathology, 186(8), 2232–2234.
- MacKinnon, A. C., et al. (2012). Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. American journal of respiratory and critical care medicine, 185(5), 537–546.
- Mahendran, S., Sethi, T. (2012). Treatments in idiopathic pulmonary fibrosis: time for a more targeted approach? QJM: An international journal of medicine, 105(10), 929–934.
- Henderson, N. C., & Sethi, T. (2009). The regulation of inflammation by galectin-3. Immunological reviews, 230(1), 160–171.
- MacKinnon, A. C., et al. (2008). Regulation of alternative macrophage activation by galectin-3. The journal of immunology, 180(4), 2650-2658.
- Henderson, N. C., at el. (2008). Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. The American journal of pathology, 172(2), 288–298.
- Henderson, N. C., at al. (2006). Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proceedings of the national academy of sciences of the United States of America, 103(13), 5060–5065.
Galectin-3 & Other Diseases:
- Siew, J. J., et al. (2019). Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease. Nature communications, 10(1), 3473.
- Navarro-Alvarez, N., et al. (2018). The effects of galectin-3 depletion apheresis on induced skin inflammation in a porcine model. Journal of clinical apheresis, 33(4), 486-493.
- MacKinnon, A. C., Liu, X., Hadoke, P. W., Miller, M. R., Newby, D. E., & Sethi, T (2013). Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology, 23(6), 654-663.
- Dang, Z., MacKinnon, A., Marson, L. P., & Sethi, T. (2012). Tubular atrophy and interstitial fibrosis after renal transplantation is dependent on galectin-3. Transplantation, 93(5), 477–484.
Galectin Modulators:
- Bertuzzi, S., et al. (2020). Targeting Galectins With Glycomimetics. Frontiers in chemistry, 8, 593.
- Zetterberg, F. R., et al. (2018). Monosaccharide Derivatives with Low-Nanomolar Lectin Affinity and High Selectivity Based on Combined Fluorine-Amide, Phenyl-Arginine, Sulfur-π, and Halogen Bond Interactions. ChemMedChem, 13(2), 133–137.
- Peterson, K., et al. (2018). Systematic Tuning of Fluoro-Galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit nM Affinity and High Selectivity. Journal of medicinal chemistry, 61(3), 1164-1175.
- Delaine, T., et al. (2016). Galectin-3-Binding Glycomimetics That Strongly Reduce Bleomycin-Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition. ChemBioChem, 17(18), 1759-1770.
- Diehl, C., et al. (2010). Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. Journal of the American chemical society, 132(41), 14577-14589.
- Salameh, B. A., Cumpstey, I., Sundin, A., Leffler, H., & Nilsson, U. J. (2010). 1H-1,2,3-triazol-1-yl thiodigalactoside derivatives as high affinity galectin-3 inhibitors. Bioorganic & medicinal chemistry, 18(14), 5367-5378.
- Cumpstey, I., Sundin, A., Leffler, H., & Nilsson, U. J. (2005). C2-symmetrical thiodigalactoside bis-benzamido derivatives as high-affinity inhibitors of galectin-3: efficient lectin inhibition through double arginine-arene interactions. Angewandte Chemie (International ed. in English), 44(32), 5110–5112.
- Sörme, P., Arnoux, P., Kahl-Knutsson, B., Leffler, H., Rini, J. M., & Nilsson, U. J. (2005). Structural and thermodynamic studies on cation-Pi interactions in lectin-ligand complexes: high-affinity galectin-3 inhibitors through fine-tuning of an arginine-arene interaction. Journal of the American chemical society, 127(6), 1737–1743.
Galectins’ Role in Cancer
- Manero-Rupérez, N., et al. (2020) The Galectin Family as Molecular Targets: Hopes for Defeating Pancreatic Cancer. Cells, 9(3), 689.
- Capalbo, C., Scafetta, G., Filetti, M., Marchetti, P., & Bartolazzi, A. (2019). Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy: The Galectin-3 Signature in NSCLCs. International journal of molecular sciences, 20(7), 1607.
- Ballester, B., Milara, J., & Cortijo, J. (2019). Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. International journal of molecular sciences, 20(3), 593.
- Vuong, L., et al. (2019). An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer research, 79(7), 1480–1492.
- Dubé-Delarosbil, C., & St-Pierre, Y. (2018). The emerging role of galectins in high-fatality cancers. Cellular and molecular life sciences : CMLS, 75(7), 1215–1226.
- Gordon-Alonso, M., Bruger, A. M., & van der Bruggen, P. (2018). Extracellular galectins as controllers of cytokines in hematological cancer. Blood, 132(5), 484–491.
- Martinez-Bosch, N., Vinaixa, J., & Navarro, P. (2018). Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy. Cancers, 10(1), 6.
- Nangia-Makker, P., Hogan, V., & Raz, A. (2018). Galectin-3 and cancer stemness. Glycobiology, 28(4), 172–181.
- Wdowiak, K., et al. (2018). Galectin Targeted Therapy in Oncology: Current Knowledge and Perspectives. International journal of molecular science, 19(1), 210.
- Chang, W. A., Tsai, M. J., Kuo, P. L., & Hung, J. Y. (2017). Role of galectins in lung cancer. Oncology letters, 14(5), 5077–5084.
- Gordon-Alonso, M., Hirsch, T., Wildmann, C., & van der Bruggen, P. (2017). Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration. Nature communications, 8(1):793.
- Seguin, L., et al. (2017). Galectin-3, a Druggable Vulnerability for KRAS-Addicted Cancers. Cancer discovery, 7(12):1464-1479.
- Ruvolo P. P. (2016). Galectin 3 as a guardian of the tumor microenvironment. Biochimica et biophysica acta, 1863(3), 427–437.
- Song, L., Tang, J. W., Owusu, L., Sun, M. Z., Wu, J., & Zhang, J. (2014). Galectin-3 in cancer. Clinica chimica acta; international journal of clinical chemistry, 431, 185–191.
- Ingrassia, L., et al. (2006). Anti-galectin compounds as potential anti-cancer drugs. Current medicinal chemistry, 13(29), 3513–3527.
LOXL2 – Reviews:
- Erasmus, M., et al. (2020). Linking LOXL2 to Cardiac Interstitial Fibrosis. International journal of molecular sciences, 21(16), 5913.
- Klepfish, M., et al. (2020). LOXL2 Inhibition Paves the Way for Macrophage-Mediated Collagen Degradation in Liver Fibrosis. Frontiers in immunology, 11(480).
- Matsuoka, K., et al. (2020). Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell research.
- Mahjour, F., et al. Mechanism for oral tumor cell lysyl oxidaselike-2 in cancer development: synergy with PDGF-AB. (2019). Oncogenesis, 8(34), 1-17.
- Peng, X., et al. (2019). Inhibition of LOXL2 Enhances the Radiosensitivity of Castration-Resistant Prostate Cancer Cells Associated with the Reversal of the EMT Process. BioMed research international, 2019(4012590).
- Puente, A., et al. (2019). LOXL2-A New Target in Antifibrogenic Therapy?. International journal of molecular sciences, 20(7), 1634.
- Vallet, S. D., & Ricard-Blum, S. (2019). Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays in biochemistry, 63(3), 349–364.
- Stagenberg, S., et al. (2018). Lysyl oxidase-like 2 inhibition ameliorates glomerulosclerosis and albuminuria in diabetic nephropathy. Scientific reports, 8(9423).
- Chang, J., et al. (2017). Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer. Oncotarget, 8(16), 26066-26078.
- Ikenaga, N., et al. (2017). Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut, 66(9), 1697–1708.
- Wu, L. & Zhu, Y. (2015). The function and mechanisms of action of LOXL2 in cancer (Review). International journal of molecular medicine, 36(5):1200-4.
- Tadmor, T., et al. (2013). The expression of lysyl-oxidase gene family members in myeloproliferative neoplasms. American journal of hematology, 88(5), 355–358.
- Papadantonakis, N., Matsuura, S., & Ravid, K. (2012). Megakaryocyte pathology and bone marrow fibrosis: the lysyl oxidase connection. Blood, 120(9), 1774–1781.